PI is not at least as succinct as MODS

Nikolay Kaleyski

July 7, 2017

Known results in knowledge compilation

＂A Knowledge Compilation Map＂，Adnan Darwiche \＆Pierre Marquis（2002）

L	NNF	DNNF	d－DNNF	sd－DNNF	FBDD	OBDD	OBDD ${ }_{\text {＜}}$	DNF	CNF	PI	IP	MODS
NNF	\leq											
DNNF	\mathbf{L}^{*}	\leq	\mathbb{L}^{*}	？	\leq	\leq						
d－DNNF	\mathbb{Z}^{*}	＜	\leq	\leq	\leq	\leq	\leq	\＆゙	Z^{*}	？	？	\leq
sd－DNNF	苂	\＆	\leq	\leq	\leq	\leq	\leq	\＆゙	\＆	？	？	\leq
FBDD	L	L	L	L	\leq	\leq	\leq	L	L	\＆	\＆	\leq
OBDD	L	\＆	\＆	L	L	\leq	\leq	L	L	\＆	L	\leq
$\mathrm{OBDD}_{<}$	\＆	\＆	\＆	L	\＆	\＆	\leq	\＆	\＆	\＆	\＆	\leq
DNF	L	\＆	\＆	L	L	\＆	L	\leq	\＆	\＆	\leq	\leq
CNF	L	L	\＆	L	L	\＆	\＆	L	\leq	\leq	L	\leq
PI	\＆	\＆	\＆	L	\＆	\＆	\＆	\＆	\＆	\leq	\＆	？
IP	L	\＆	\＆	L	\＆	\＆	\＆	L	L	L	\leq	\leq
MODS	L	\＆	\＆	\＆	\＆	\＆	\＆	\＆	\＆	\pm	\＆	\leq

Known results in knowledge compilation（continued）

＂A Knowledge Compilation Map＂，Adnan Darwiche \＆Pierre Marquis（2002）

L	NNF	DNNF	d－DNNF	sd－DNNF	FBDD	OBDD	OBDD ${ }_{\text {＜}}$	DNF	CNF	PI	IP	MODS
NNF	\leq											
DNNF	\mathbf{L}^{*}	\leq	\mathbb{L}^{*}	？	\leq	\leq						
d－DNNF	\mathbb{Z}^{*}	＜	\leq	\leq	\leq	\leq	\leq	\＆゙	Z^{*}	？	？	\leq
sd－DNNF	苂	\＆	\leq	\leq	\leq	\leq	\leq	\＆゙	\＆	？	？	\leq
FBDD	L	L	L	L	\leq	\leq	\leq	L	L	\＆	\＆	\leq
OBDD	L	\＆	\＆	L	L	\leq	\leq	L	L	\＆	L	\leq
$\mathrm{OBDD}_{<}$	\＆	\＆	\＆	L	\＆	\＆	\leq	\＆	\＆	\＆	\＆	\leq
DNF	L	\＆	\＆	L	L	\＆	L	\leq	\＆	\＆	\leq	\leq
CNF	L	L	\＆	L	L	\＆	\＆	L	\leq	\leq	L	＜
PI	\＆	\＆	\＆	L	\＆	\＆	\＆	\＆	\＆	\leq	\＆	？
IP	L	\＆	\＆	L	\＆	\＆	\＆	L	L	L	\leq	\leq
MODS	L	\＆	\＆	\＆	\＆	\＆	\＆	\＆	\＆	\pm	\＆	\leq

Background: Sentences and Formulas

- A sentence is a directed acyclic graph with Boolean operations in the internal nodes and literals in the leaves.

Background: Sentences and Formulas

- A sentence is a directed acyclic graph with Boolean operations in the internal nodes and literals in the leaves.

- Every sentence has an equivalent Boolean formula.

$$
x_{1} x_{2} x_{3} \vee \overline{x_{1} x_{2}} x_{3} \vee \overline{x_{1}} x_{2} x_{3} \vee \overline{x_{1} x_{2} x_{3}}
$$

Background: Sentences and Formulas

- A sentence is a directed acyclic graph with Boolean operations in the internal nodes and literals in the leaves.

- Every sentence has an equivalent Boolean formula.

$$
x_{1} x_{2} x_{3} \vee \overline{x_{1} x_{2}} x_{3} \vee \overline{x_{1}} x_{2} x_{3} \vee \overline{x_{1} x_{2} x_{3}}
$$

- We will work with formulas.

Background: Languages and Succinctness

- A language is a class of formulas having some given property.

Background: Languages and Succinctness

- A language is a class of formulas having some given property.
- Examples of languages: CNF, DNF, NNF, etc.

Background: Languages and Succinctness

- A language is a class of formulas having some given property.
- Examples of languages: CNF, DNF, NNF, etc.
- A language L_{1} is at least as succinct as a language L_{2}
$\left(L_{1} \leq L_{2}\right)$ if there is a polynomial p such that

$$
\left(\forall \varphi_{2} \in L_{2}\right)\left(\exists \varphi_{1} \in L_{1}\right)\left(\varphi_{1} \equiv \varphi_{2} \&\left|\varphi_{1}\right| \leq p\left(\left|\varphi_{2}\right|\right)\right)
$$

Background: MODS and PI

- A variable assignment can be expressed as a term containing all pertinent variables, e.g.

$$
x_{1} \overline{x_{2} x_{3}} x_{4} x_{5}
$$

for

$$
f=\left\{\left(x_{1}, 1\right),\left(x_{2}, 0\right),\left(x_{3}, 0\right),\left(x_{4}, 1\right),\left(x_{5}, 1\right)\right\}
$$

Background: MODS and PI

- A variable assignment can be expressed as a term containing all pertinent variables, e.g.

$$
x_{1} \overline{x_{2} x_{3}} x_{4} x_{5}
$$

for

$$
f=\left\{\left(x_{1}, 1\right),\left(x_{2}, 0\right),\left(x_{3}, 0\right),\left(x_{4}, 1\right),\left(x_{5}, 1\right)\right\}
$$

- An implicate of a formula φ is a clause π such that

$$
(\forall v: \operatorname{Vars}(\varphi) \rightarrow\{0,1\})(\varphi(v)=1 \Longrightarrow \pi(v)=1)
$$

for any variable assignment v.

Background: MODS and PI

- A variable assignment can be expressed as a term containing all pertinent variables, e.g.

$$
x_{1} \overline{x_{2} x_{3}} x_{4} x_{5}
$$

for

$$
f=\left\{\left(x_{1}, 1\right),\left(x_{2}, 0\right),\left(x_{3}, 0\right),\left(x_{4}, 1\right),\left(x_{5}, 1\right)\right\}
$$

- An implicate of a formula φ is a clause π such that

$$
(\forall v: \operatorname{Vars}(\varphi) \rightarrow\{0,1\})(\varphi(v)=1 \Longrightarrow \pi(v)=1)
$$

for any variable assignment v.

- A prime implicate is an implicate from which no literal can be removed without it ceasing to be an implicate.

Background: MODS and PI (continued)

- An implicant of a formula φ is a term τ such that

$$
(\forall v: \operatorname{Vars}(\varphi) \rightarrow\{0,1\})(\tau(v)=1 \Longrightarrow \varphi(v)=1)
$$

for any variable assignment v.

Background: MODS and PI (continued)

- An implicant of a formula φ is a term τ such that

$$
(\forall v: \operatorname{Vars}(\varphi) \rightarrow\{0,1\})(\tau(v)=1 \Longrightarrow \varphi(v)=1)
$$

for any variable assignment v.

- A prime implicant is an implicant from which no literal can be removed without it ceasing to be an implicant.

Background: MODS and PI (continued)

- An implicant of a formula φ is a term τ such that

$$
(\forall v: \operatorname{Vars}(\varphi) \rightarrow\{0,1\})(\tau(v)=1 \Longrightarrow \varphi(v)=1)
$$

for any variable assignment v.

- A prime implicant is an implicant from which no literal can be removed without it ceasing to be an implicant.
- A formula in the MODS language is a list (disjunction) of all of its models (terms).

Background: MODS and PI (continued)

- An implicant of a formula φ is a term τ such that

$$
(\forall v: \operatorname{Vars}(\varphi) \rightarrow\{0,1\})(\tau(v)=1 \Longrightarrow \varphi(v)=1)
$$

for any variable assignment v.

- A prime implicant is an implicant from which no literal can be removed without it ceasing to be an implicant.
- A formula in the MODS language is a list (disjunction) of all of its models (terms).
- A sentence in the PI language is a list (conjunction) of all of its prime implicates.

Background: MODS and PI (continued)

- An implicant of a formula φ is a term τ such that

$$
(\forall v: \operatorname{Vars}(\varphi) \rightarrow\{0,1\})(\tau(v)=1 \Longrightarrow \varphi(v)=1)
$$

for any variable assignment v.

- A prime implicant is an implicant from which no literal can be removed without it ceasing to be an implicant.
- A formula in the MODS language is a list (disjunction) of all of its models (terms).
- A sentence in the PI language is a list (conjunction) of all of its prime implicates.
- The MODS language is not at least as succinct as PI as witnessed by

$$
\Sigma=\bigvee_{i=1}^{n} x_{i}
$$

Overview

- Inductive construction of a sequence of Boolean functions $\left\{\varphi_{i}\right\}_{i}$.

Overview

- Inductive construction of a sequence of Boolean functions $\left\{\varphi_{i}\right\}_{i}$.
- Lower bound on the number of prime implicants of φ_{i} : super-polynomial in the number of false points of φ_{i}.

Overview

- Inductive construction of a sequence of Boolean functions $\left\{\varphi_{i}\right\}_{i}$.
- Lower bound on the number of prime implicants of φ_{i} : super-polynomial in the number of false points of φ_{i}.
- The negated functions $\overline{\varphi_{i}}$ witness $P I \not \leq M O D S$.

Overview

- Inductive construction of a sequence of Boolean functions $\left\{\varphi_{i}\right\}_{i}$.
- Lower bound on the number of prime implicants of φ_{i} : super-polynomial in the number of false points of φ_{i}.
- The negated functions $\overline{\varphi_{i}}$ witness $P I \not \leq M O D S$.
- Upper bound: separation cannot be improved by better analysis.

Overview

- Inductive construction of a sequence of Boolean functions $\left\{\varphi_{i}\right\}_{i}$.
- Lower bound on the number of prime implicants of φ_{i} : super-polynomial in the number of false points of φ_{i}.
- The negated functions $\overline{\varphi_{i}}$ witness $P I \not \leq M O D S$.
- Upper bound: separation cannot be improved by better analysis.
- Exact formula.

Overview

- Inductive construction of a sequence of Boolean functions $\left\{\varphi_{i}\right\}_{i}$.
- Lower bound on the number of prime implicants of φ_{i} : super-polynomial in the number of false points of φ_{i}.
- The negated functions $\overline{\varphi_{i}}$ witness $P I \not \leq M O D S$.
- Upper bound: separation cannot be improved by better analysis.
- Exact formula.
- Thesis available at Charles University's Thesis Repository.

Finding a counterexample

- Sequence of Boolean functions φ_{i} with "many" prime implicates and few models...

- Sequence of Boolean functions φ_{i} with "many" prime implicates and few models...
- or a sequence with "many" prime implicants and few false points.

Finding a counterexample

- Sequence of Boolean functions φ_{i} with "many" prime implicates and few models...
- or a sequence with "many" prime implicants and few false points.
- Geometric view: inserting false points into a hypercube

Finding a counterexample (continued)

- Intuition: insert false points, maximize Hamming distance between true points

Finding a counterexample (continued)

- Intuition: insert false points, maximize Hamming distance between true points
- Suggestion: linear code

Construction

- A sequence of matrices $\left\{\mathbf{A}_{i}\right\}_{i \in \mathcal{N}}$ is defined as

$$
\begin{gathered}
\mathbf{A}_{0}=(0) \\
\mathbf{A}_{i+1}=\left(\begin{array}{cc}
\mathbf{A}_{i} & \mathbf{A}_{i} \\
\mathbf{A}_{i} & \overline{\mathbf{A}_{i}}
\end{array}\right)
\end{gathered}
$$

Construction

- A sequence of matrices $\left\{\mathbf{A}_{i}\right\}_{i \in \mathcal{N}}$ is defined as

$$
\begin{gathered}
\mathbf{A}_{0}=(0) \\
\mathbf{A}_{i+1}=\left(\begin{array}{cc}
\mathbf{A}_{i} & \mathbf{A}_{i} \\
\mathbf{A}_{i} & \overline{\mathbf{A}_{i}}
\end{array}\right)
\end{gathered}
$$

- From these, another sequence $\left\{\mathbf{B}_{i}\right\}_{i \in \mathcal{N}}$ is defined as

$$
\mathbf{B}_{i}=\binom{\mathbf{A}_{i}}{\overline{\mathbf{A}}_{i}}
$$

Construction

- A sequence of matrices $\left\{\mathbf{A}_{i}\right\}_{i \in \mathcal{N}}$ is defined as

$$
\begin{gathered}
\mathbf{A}_{0}=(0) \\
\mathbf{A}_{i+1}=\left(\begin{array}{ll}
\mathbf{A}_{i} & \mathbf{A}_{i} \\
\mathbf{A}_{i} & \overline{\mathbf{A}_{i}}
\end{array}\right)
\end{gathered}
$$

- From these, another sequence $\left\{\mathbf{B}_{i}\right\}_{i \in \mathcal{N}}$ is defined as

$$
\mathbf{B}_{i}=\binom{\mathbf{A}_{i}}{\overline{\mathbf{A}}_{i}}
$$

- The Boolean function φ_{i} for $i \in \mathcal{N}$ is now defined as the function having precisely the rows of \mathbf{B}_{i} as false points.

Construction

- A sequence of matrices $\left\{\mathbf{A}_{i}\right\}_{i \in \mathcal{N}}$ is defined as

$$
\begin{gathered}
\mathbf{A}_{0}=(0) \\
\mathbf{A}_{i+1}=\left(\begin{array}{cc}
\mathbf{A}_{i} & \mathbf{A}_{i} \\
\mathbf{A}_{i} & \overline{\mathbf{A}_{i}}
\end{array}\right)
\end{gathered}
$$

- From these, another sequence $\left\{\mathbf{B}_{i}\right\}_{i \in \mathcal{N}}$ is defined as

$$
\mathbf{B}_{i}=\binom{\mathbf{A}_{i}}{\overline{\mathbf{A}}_{i}}
$$

- The Boolean function φ_{i} for $i \in \mathcal{N}$ is now defined as the function having precisely the rows of \mathbf{B}_{i} as false points.
- It is shown that φ_{i} has many prime implicants; then its negation $\bar{\varphi}_{i}$ has many prime imlicates.

Number of prime implicants: Lower bound

- Given a prime implicant p of φ_{i} with a single negative literal whose positive part agrees with precisely one row of \mathbf{B}_{i}, we can construct 2^{i} different prime implicants of φ_{i+2} via the following construction step:

Number of prime implicants: Lower bound

- Given a prime implicant p of φ_{i} with a single negative literal whose positive part agrees with precisely one row of \mathbf{B}_{i}, we can construct 2^{i} different prime implicants of φ_{i+2} via the following construction step:

- By induction, φ_{i} has $\Omega\left(2^{\frac{(i-1)^{2}-1}{4}}\right)$ prime implicants...

Number of prime implicants: Lower bound

- Given a prime implicant p of φ_{i} with a single negative literal whose positive part agrees with precisely one row of \mathbf{B}_{i}, we can construct 2^{i} different prime implicants of φ_{i+2} via the following construction step:

- By induction, φ_{i} has $\Omega\left(2^{\frac{(i-1)^{2}-1}{4}}\right)$ prime implicants...
- ...but "only" $\Theta\left(2^{i}\right)$ false points.

Number of prime implicants: Lower bound

- Given a prime implicant p of φ_{i} with a single negative literal whose positive part agrees with precisely one row of \mathbf{B}_{i}, we can construct 2^{i} different prime implicants of φ_{i+2} via the following construction step:

- By induction, φ_{i} has $\Omega\left(2^{\frac{(i-1)^{2}-1}{4}}\right)$ prime implicants...
- ... but "only" $\Theta\left(2^{i}\right)$ false points.
- Hence $\overline{\varphi_{i}}$ has "many" prime implicates w.r.t. to its number of true points, or models.

Number of prime implicants: Upper bound

- The prime implicants considered are very specific.

Number of prime implicants: Upper bound

- The prime implicants considered are very specific.
- Is an exponential separation of PI and MODS possible via φ_{i} ?

Number of prime implicants: Upper bound

- The prime implicants considered are very specific.
- Is an exponential separation of PI and MODS possible via φ_{i} ?
- A generalization of the above construction is needed.

Number of prime implicants: Upper bound

- The prime implicants considered are very specific.
- Is an exponential separation of PI and MODS possible via φ_{i} ?
- A generalization of the above construction is needed.
- Fixing the values of variables has "global effects" and affects other variables as well:

\downarrow - \downarrow				$\downarrow \downarrow$				$\downarrow \downarrow$					$\downarrow \downarrow$		
1	1	*	1	*	*	*	*	*	*	*	*	*	*	*	*
${ }_{1}$	x_{2}	x_{3}	x_{4}	${ }^{x_{5}}$	${ }_{6}$	x_{7}	${ }^{x_{8}}$	${ }_{9}$	x_{10}	x_{11}	x_{12}	x_{13}	x_{14}	x_{15}	${ }_{16}$
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1

Number of prime implicants: Upper bound

- A graph-based representation is used to express the polar relations between pairs of variables.

Number of prime implicants: Upper bound

- A graph-based representation is used to express the polar relations between pairs of variables.
- Each non-redundant fixation halves the number of connected components.

Number of prime implicants: Upper bound

- A graph-based representation is used to express the polar relations between pairs of variables.
- Each non-redundant fixation halves the number of connected components.

Number of prime implicants: Upper bound

- A graph-based representation is used to express the polar relations between pairs of variables.
- Each non-redundant fixation halves the number of connected components.

Number of prime implicants: Upper bound

- A graph-based representation is used to express the polar relations between pairs of variables.
- Each non-redundant fixation halves the number of connected components.

Number of prime implicants: Upper bound

- The proof is somewhat technical.

Number of prime implicants: Upper bound

- The proof is somewhat technical.
- Two variables can be fixed without merging any connected components (one positive, one negative).

Number of prime implicants: Upper bound

- The proof is somewhat technical.
- Two variables can be fixed without merging any connected components (one positive, one negative).
- Every further fixation halves the number of components or introduces redundancy.

Number of prime implicants: Upper bound

- The proof is somewhat technical.
- Two variables can be fixed without merging any connected components (one positive, one negative).
- Every further fixation halves the number of components or introduces redundancy.
- After $2+i$ fixations, the graph becomes connected and no further non-redundant fixations can be performed.

Number of prime implicants: Upper bound

- The proof is somewhat technical.
- Two variables can be fixed without merging any connected components (one positive, one negative).
- Every further fixation halves the number of components or introduces redundancy.
- After $2+i$ fixations, the graph becomes connected and no further non-redundant fixations can be performed.
- Thus no prime implicant of φ_{i} can have more than $(i+2)$ literals, and their number is at most

$$
\sum_{l=1}^{i+2}\binom{n}{l} 2^{l} \leq 3^{n+2} \in \Theta\left(3^{n}\right)
$$

Number of prime implicants: Upper bound

- The proof is somewhat technical.
- Two variables can be fixed without merging any connected components (one positive, one negative).
- Every further fixation halves the number of components or introduces redundancy.
- After $2+i$ fixations, the graph becomes connected and no further non-redundant fixations can be performed.
- Thus no prime implicant of φ_{i} can have more than $(i+2)$ literals, and their number is at most

$$
\sum_{l=1}^{i+2}\binom{n}{l} 2^{l} \leq 3^{n+2} \in \Theta\left(3^{n}\right)
$$

- The number of false points of φ_{n} is exponential in n !

Number of prime implicants: Exact formula

- The polar graphs are analyzed further by observing a correspondence between variable fixations yielding connected graphs and generating sets of the vector space $\{0,1\}^{i}$.

Number of prime implicants: Exact formula

- The polar graphs are analyzed further by observing a correspondence between variable fixations yielding connected graphs and generating sets of the vector space $\{0,1\}^{i}$.
- The exact number of prime implicants of φ_{i} is

$$
\sum_{i=1}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{2^{n+2 i+1} \cdot \alpha_{n}^{2 i}}{(2 i+1)(2 i+2)}
$$

where α_{n}^{i} is the number of i-element linearly independent sets in $\{0,1\}^{n}$.

