PI is not at least as succinct as MODS

Nikolay Kaleyski

July 7, 2017

Nikolay Kaleyski PI is not at least as succinct as MODS

< ≣ >

< ∃ >

"A Knowledge Compilation Map", Adnan Darwiche & Pierre Marquis (2002)

L	NNF	DNNF	d-DNNF	sd-DNNF	FBDD	OBDD	OBDD<	DNF	CNF	PI	IP	MODS
NNF	_ ≤	≤	≤	≤	≤	≤	≤	\leq	≤	\leq	\leq	≤
DNNF	≰*	≤	≤	≤	≤	≤	≤	\leq	_≰*	?	\leq	≤
d-DNNF	≰*	≰*	≤	≤	_ ≤	≤	≤	≰*	≰*	?	?	≤
sd-DNNF	≰*	≰*	≤	≤	≤	≤	≤	≰*	_≰*	?	?	≤
FBDD	Z	Z	Z	¥	≤	≤	≤	Z	≰	Z	≰	≤
OBDD	₹	≰	₹	¥	₹	≤	≤	₹	¥	¥	¥	\leq
OBDD<	≰	≰	≰	≰	≰	≰	≤	1	1	1	1	\leq
DNF	≰	≰	≰	≰	≰	≰	≰	\leq	≰	Z	\leq	≤
CNF	≰	≰	₹	¥	₹	₹	≰	¥	<	_ ≤	¥	≤
PI	≰	≰	≰	≰	≰	≰	≰	Z	₹.	\leq	Z	?
IP	Z	¥	¥	¥	¥	¥	¥	Z	¥	Z	\leq	≤
MODS	1	¥	1	≰.	Z	1	≰.	1	1	1	≰	≤

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶ …

"A Knowledge Compilation Map", Adnan Darwiche & Pierre Marquis (2002)

L	NNF	DNNF	d-DNNF	sd-DNNF	FBDD	OBDD	OBDD<	DNF	CNF	PI	IP	MODS
NNF	_ ≤	_ ≤	≤	≤	≤	≤	≤	≤	≤	\leq	\leq	≤
DNNF	≰*	≤	≤	≤	≤	≤	≤	≤	_≰*	?	\leq	≤
d-DNNF	≰*	≰*	≤	≤	_ ≤	≤	≤	≰*	≰*	?	?	≤
sd-DNNF	≰*	_≰*	≤	≤	≤	≤	≤	_≰*	_≰*	?	?	≤
FBDD	≰	≰	≰	₹.	_ ≤	≤	≤	≰	≰	1	≰	≤
OBDD	₹	₹	₹	₹	₹	≤	≤	¥	¥	¥	¥	\leq
OBDD<	≰	≰	≰	≰	≰	≰	≤	1	1	1	1	\leq
DNF	≰	≰	≰	₹	≰	≰	≰	\leq	≰	Z	\leq	≤
CNF	≰	≰	¥	₹	₹	₹	≰	¥	<	_ ≤	¥.	<
PI	≰	≰	≰	≰	≰	≰	≰	Z	₹.	\leq	≰	?
IP	Z	¥	¥	¥	¥	¥	¥	¥	¥	Z	\leq	_ ≤
MODS	1	Z	≰.	1 1	Z	1	≰.	Z	Z	1	≰	≤

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶ …

Background: Sentences and Formulas

 A sentence is a directed acyclic graph with Boolean operations in the internal nodes and literals in the leaves.

→ 米田 → 米田 →

Background: Sentences and Formulas

 A sentence is a directed acyclic graph with Boolean operations in the internal nodes and literals in the leaves.

• Every sentence has an equivalent Boolean formula.

$x_1x_2x_3 \lor \overline{x_1x_2}x_3 \lor \overline{x_1}x_2x_3 \lor \overline{x_1x_2x_3}$

高 と く ヨ と く ヨ と

Background: Sentences and Formulas

 A sentence is a directed acyclic graph with Boolean operations in the internal nodes and literals in the leaves.

• Every sentence has an equivalent Boolean formula.

 $x_1x_2x_3 \lor \overline{x_1x_2}x_3 \lor \overline{x_1}x_2x_3 \lor \overline{x_1x_2x_3}$

• We will work with formulas.

→ ∃ → → ∃ →

• A language is a class of formulas having some given property.

伺 と く き と く き とう

- A language is a class of formulas having some given property.
- Examples of languages: CNF, DNF, NNF, etc.

同下 イヨト イヨト

- A language is a class of formulas having some given property.
- Examples of languages: CNF, DNF, NNF, etc.
- A language L₁ is at least as succinct as a language L₂ (L₁ ≤ L₂) if there is a polynomial p such that

$$(\forall \varphi_2 \in L_2)(\exists \varphi_1 \in L_1)(\varphi_1 \equiv \varphi_2 \& |\varphi_1| \le p(|\varphi_2|))$$

Background: MODS and PI

• A variable assignment can be expressed as a term containing all pertinent variables, e.g.

 $x_1 \overline{x_2 x_3} x_4 x_5$

for

$$f = \{(x_1, 1), (x_2, 0), (x_3, 0), (x_4, 1), (x_5, 1)\}$$

伺 と く ヨ と く ヨ と

• A variable assignment can be expressed as a term containing all pertinent variables, e.g.

$$x_1 \overline{x_2 x_3} x_4 x_5$$

for

$$f = \{(x_1, 1), (x_2, 0), (x_3, 0), (x_4, 1), (x_5, 1)\}$$

• An **implicate** of a formula φ is a clause π such that

$$(\forall v: Vars(\varphi) \rightarrow \{0,1\})(\varphi(v) = 1 \implies \pi(v) = 1)$$

for any variable assignment v.

高 と く ヨ と く ヨ と

• A variable assignment can be expressed as a term containing all pertinent variables, e.g.

$$x_1 \overline{x_2 x_3} x_4 x_5$$

for

$$f = \{(x_1, 1), (x_2, 0), (x_3, 0), (x_4, 1), (x_5, 1)\}$$

• An **implicate** of a formula φ is a clause π such that

$$(\forall v: Vars(\varphi) \rightarrow \{0,1\})(\varphi(v) = 1 \implies \pi(v) = 1)$$

for any variable assignment v.

• A **prime implicate** is an implicate from which no literal can be removed without it ceasing to be an implicate.

・ 戸 と ・ ヨ と ・ モ と …

• An **implicant** of a formula φ is a term τ such that

$$(\forall v: Vars(\varphi) \rightarrow \{0,1\})(\tau(v) = 1 \implies \varphi(v) = 1)$$

for any variable assignment v.

高 と く ヨ と く ヨ と

• An **implicant** of a formula φ is a term τ such that

$$(\forall v: Vars(\varphi) \rightarrow \{0,1\})(\tau(v) = 1 \implies \varphi(v) = 1)$$

for any variable assignment v.

• A **prime implicant** is an implicant from which no literal can be removed without it ceasing to be an implicant.

• An **implicant** of a formula φ is a term τ such that

$$(\forall v: Vars(\varphi) \rightarrow \{0,1\})(\tau(v) = 1 \implies \varphi(v) = 1)$$

for any variable assignment v.

- A **prime implicant** is an implicant from which no literal can be removed without it ceasing to be an implicant.
- A formula in the **MODS language** is a list (disjunction) of all of its models (terms).

伺 ト イ ヨ ト イ ヨ ト

• An **implicant** of a formula φ is a term τ such that

$$(\forall v: Vars(\varphi) \rightarrow \{0,1\})(\tau(v) = 1 \implies \varphi(v) = 1)$$

for any variable assignment v.

- A **prime implicant** is an implicant from which no literal can be removed without it ceasing to be an implicant.
- A formula in the **MODS language** is a list (disjunction) of all of its models (terms).
- A sentence in the PI language is a list (conjunction) of all of its prime implicates.

伺 ト イ ヨ ト イ ヨ ト

• An **implicant** of a formula φ is a term τ such that

$$(\forall v: Vars(\varphi) \rightarrow \{0,1\})(\tau(v) = 1 \implies \varphi(v) = 1)$$

for any variable assignment v.

- A **prime implicant** is an implicant from which no literal can be removed without it ceasing to be an implicant.
- A formula in the **MODS language** is a list (disjunction) of all of its models (terms).
- A sentence in the PI language is a list (conjunction) of all of its prime implicates.
- The MODS language is not at least as succinct as PI as witnessed by

$$\Sigma = \bigvee_{i=1}^n x_i$$

• Inductive construction of a sequence of Boolean functions $\{\varphi_i\}_i$.

▲御▶ ▲理▶ ▲理▶

э

- Inductive construction of a sequence of Boolean functions $\{\varphi_i\}_i$.
- Lower bound on the number of prime implicants of φ_i: super-polynomial in the number of false points of φ_i.

- Inductive construction of a sequence of Boolean functions {φ_i}_i.
- Lower bound on the number of prime implicants of φ_i: super-polynomial in the number of false points of φ_i.
- The negated functions $\overline{\varphi_i}$ witness $PI \not\leq MODS$.

- Inductive construction of a sequence of Boolean functions $\{\varphi_i\}_i$.
- Lower bound on the number of prime implicants of φ_i: super-polynomial in the number of false points of φ_i.
- The negated functions $\overline{\varphi_i}$ witness $PI \not\leq MODS$.
- Upper bound: separation cannot be improved by better analysis.

- Inductive construction of a sequence of Boolean functions $\{\varphi_i\}_i$.
- Lower bound on the number of prime implicants of φ_i: super-polynomial in the number of false points of φ_i.
- The negated functions $\overline{\varphi_i}$ witness $PI \not\leq MODS$.
- Upper bound: separation cannot be improved by better analysis.
- Exact formula.

- Inductive construction of a sequence of Boolean functions $\{\varphi_i\}_i$.
- Lower bound on the number of prime implicants of φ_i: super-polynomial in the number of false points of φ_i.
- The negated functions $\overline{\varphi_i}$ witness $PI \not\leq MODS$.
- Upper bound: separation cannot be improved by better analysis.
- Exact formula.
- Thesis available at *Charles University's Thesis Repository*.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

• Sequence of Boolean functions φ_i with "many" prime implicates and few models...

- Sequence of Boolean functions φ_i with "many" prime implicates and few models...
- or a sequence with "many" prime *implicants* and few *false points*.

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Sequence of Boolean functions φ_i with "many" prime implicates and few models...
- or a sequence with "many" prime *implicants* and few *false points*.
- Geometric view: inserting false points into a hypercube

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Finding a counterexample (continued)

 Intuition: insert false points, maximize Hamming distance between true points

- ∢ ≣ ▶

Finding a counterexample (continued)

- Intuition: insert false points, maximize Hamming distance between true points
- Suggestion: linear code

A B > A B >

Construction

• A sequence of matrices $\{\mathbf{A}_i\}_{i \in \mathcal{N}}$ is defined as

$$egin{aligned} \mathbf{A}_0 &= (0) \ \mathbf{A}_{i+1} &= \left(egin{aligned} \mathbf{A}_i & \mathbf{A}_i \ \mathbf{A}_i & \overline{\mathbf{A}}_i \end{array}
ight) \end{aligned}$$

・ロト ・回ト ・ヨト ・ヨト

æ

• A sequence of matrices $\{\boldsymbol{A}_i\}_{i\in\mathcal{N}}$ is defined as

$$egin{aligned} \mathbf{A}_0 &= (0) \ \mathbf{A}_{i+1} &= \left(egin{aligned} \mathbf{A}_i & \mathbf{A}_i \ \mathbf{A}_i & \mathbf{\overline{A}}_i \end{array}
ight) \end{aligned}$$

 \bullet From these, another sequence $\{\bm{B}_i\}_{i\in\mathcal{N}}$ is defined as

$$\mathbf{B}_i = \left(\begin{array}{c} \mathbf{A}_i \\ \overline{\mathbf{A}}_i \end{array}\right)$$

・ロト ・回ト ・ヨト ・ヨト

• A sequence of matrices $\{\boldsymbol{\mathsf{A}}_i\}_{i\in\mathcal{N}}$ is defined as

$$egin{aligned} \mathbf{A}_0 &= (0) \ \mathbf{A}_{i+1} &= \left(egin{aligned} \mathbf{A}_i & \mathbf{A}_i \ \mathbf{A}_i & \overline{\mathbf{A}}_i \end{array}
ight) \end{aligned}$$

• From these, another sequence $\{{f B}_i\}_{i\in {\cal N}}$ is defined as

$$\mathbf{B}_i = \left(\begin{array}{c} \mathbf{A}_i \\ \overline{\mathbf{A}}_i \end{array}\right)$$

 The Boolean function φ_i for i ∈ N is now defined as the function having precisely the rows of B_i as false points.

• A sequence of matrices $\{\mathbf{A}_i\}_{i\in\mathcal{N}}$ is defined as

$$\mathbf{A}_{0} = (0)$$
$$\mathbf{A}_{i+1} = \left(\begin{array}{cc} \mathbf{A}_{i} & \mathbf{A}_{i} \\ \mathbf{A}_{i} & \mathbf{\overline{A}}_{i} \end{array}\right)$$

• From these, another sequence $\{\mathbf{B}_i\}_{i\in\mathcal{N}}$ is defined as

$$\mathbf{B}_i = \left(\begin{array}{c} \mathbf{A}_i \\ \overline{\mathbf{A}}_i \end{array}\right)$$

- The Boolean function φ_i for i ∈ N is now defined as the function having precisely the rows of B_i as false points.
- It is shown that φ_i has many prime *implicants*; then its negation φ_i has many prime *imlicates*.

• Given a prime implicant p of φ_i with a single negative literal whose positive part agrees with precisely one row of \mathbf{B}_i , we can construct 2^i different prime implicants of φ_{i+2} via the following construction step:

高 と く ヨ と く ヨ と

 Given a prime implicant p of φ_i with a single negative literal whose positive part agrees with precisely one row of B_i, we can construct 2ⁱ different prime implicants of φ_{i+2} via the following construction step:

□ > 《 E > 《 E > _

• Given a prime implicant p of φ_i with a single negative literal whose positive part agrees with precisely one row of \mathbf{B}_i , we can construct 2^i different prime implicants of φ_{i+2} via the following construction step:

• ... but "only" $\Theta(2^i)$ false points.

• Given a prime implicant p of φ_i with a single negative literal whose positive part agrees with precisely one row of \mathbf{B}_i , we can construct 2^i different prime implicants of φ_{i+2} via the following construction step:

- ... but "only" $\Theta(2^i)$ false points.
- Hence φ_i has "many" prime *implicates* w.r.t. to its number of *true* points, or models.

• The prime implicants considered are very specific.

同下 イヨト イヨト

- The prime implicants considered are very specific.
- Is an exponential separation of PI and MODS possible via φ_i ?

伺 と く ヨ と く ヨ と

- The prime implicants considered are very specific.
- Is an exponential separation of PI and MODS possible via φ_i ?
- A generalization of the above construction is needed.

- The prime implicants considered are very specific.
- Is an exponential separation of PI and MODS possible via φ_i ?
- A generalization of the above construction is needed.
- Fixing the values of variables has "global effects" and affects other variables as well:

• A graph-based representation is used to express the polar relations between pairs of variables.

高 と く ヨ と く ヨ と

- A graph-based representation is used to express the polar relations between pairs of variables.
- Each non-redundant fixation halves the number of connected components.

- A graph-based representation is used to express the polar relations between pairs of variables.
- Each non-redundant fixation halves the number of connected components.

- A graph-based representation is used to express the polar relations between pairs of variables.
- Each non-redundant fixation halves the number of connected components.

3 ►

- A graph-based representation is used to express the polar relations between pairs of variables.
- Each non-redundant fixation halves the number of connected components.

글 🖌 🖌 글 🕨

• The proof is somewhat technical.

留 と く ヨ と く ヨ と

- The proof is somewhat technical.
- Two variables can be fixed without merging any connected components (one positive, one negative).

- The proof is somewhat technical.
- Two variables can be fixed without merging any connected components (one positive, one negative).
- Every further fixation halves the number of components or introduces redundancy.

伺 と く ヨ と く ヨ と

- The proof is somewhat technical.
- Two variables can be fixed without merging any connected components (one positive, one negative).
- Every further fixation halves the number of components or introduces redundancy.
- After 2 + *i* fixations, the graph becomes connected and no further non-redundant fixations can be performed.

- The proof is somewhat technical.
- Two variables can be fixed without merging any connected components (one positive, one negative).
- Every further fixation halves the number of components or introduces redundancy.
- After 2 + *i* fixations, the graph becomes connected and no further non-redundant fixations can be performed.
- Thus no prime implicant of φ_i can have more than (i + 2) literals, and their number is at most

$$\sum_{l=1}^{i+2} \binom{n}{l} 2^l \leq 3^{n+2} \in \Theta(3^n)$$

- The proof is somewhat technical.
- Two variables can be fixed without merging any connected components (one positive, one negative).
- Every further fixation halves the number of components or introduces redundancy.
- After 2 + *i* fixations, the graph becomes connected and no further non-redundant fixations can be performed.
- Thus no prime implicant of φ_i can have more than (i + 2) literals, and their number is at most

$$\sum_{l=1}^{i+2} \binom{n}{l} 2^l \leq 3^{n+2} \in \Theta(3^n)$$

• The number of false points of φ_n is exponential in n!

イロン 不同 とくほう イロン

Number of prime implicants: Exact formula

 The polar graphs are analyzed further by observing a correspondence between variable fixations yielding connected graphs and generating sets of the vector space {0,1}ⁱ.

- The polar graphs are analyzed further by observing a correspondence between variable fixations yielding connected graphs and generating sets of the vector space {0,1}ⁱ.
- The exact number of prime implicants of φ_i is

$$\sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} \frac{2^{n+2i+1} \cdot \alpha_n^{2i}}{(2i+1)(2i+2)}$$

where α_n^i is the number of *i*-element linearly independent sets in $\{0, 1\}^n$.